Computational models of the heart could be a precious tool for cardiologists during diagnosis and decision making. They can help with the interpretation of a patient’s clinical measurements to discover the underlying pathology or to simulate different intervention scenarios. Typically, the model requires a personalization stage that incorporates a person’s specific heart geometry, but should ideally also include orientation of the muscle fibers. Ph.D. candidate Luca Barbarotta of the TU/e Department of Biomedical Engineering researched the impact of different choices for geometry and fiber orientation on the outcomes of the model. He successfully defended his thesis on 13 January 2021.